Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
7.
Neurochem Int ; 174: 105681, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341035

RESUMO

Vinclozolin (VCZ) is a widely used fungicide in agriculture, especially in fruits and wine. Various studies have detailed the effects of VCZ exposure on different organs, but no information is available on its effects on brain tissues. This paper investigated the effects of VCZ exposure on the oxidative stress and mitochondrial dysfunction in brain tissue. C57BL/6 mice were exposed to VCZ (100 mg/kg) by oral gavage for 28 days. Mitochondrial homeostasis, often known as mitochondrial quality control, involves a range of processes, including mitochondrial biogenesis, mitochondrial fusion and fission, mitophagy and autophagy. VCZ administration modified the mRNA expression levels of Sirt1, Sirt3, PGC-1α, TFAM, Nrf1, VDAC-1 and Cyt c in brain tissue, as compared to control animals (CTR). The analyses also showed increased oxidative stress, in particular VCZ administration reduced SOD and CAT activities and GSH levels while increased T-AOC levels and lipid peroxidation. Additionally, brain tissues from VCZ group showed DNA oxidation (increased PARP-1 immunostaining) and apoptosis (increased TUNEL+ cells, increased expression of Bax mRNA level and reduced Bcl-2 levels). Western blot and immunohistochemical analyses showed increased mitophagic pathway with the accumulation of PINK1 and Parkin in mitochondria. Additionally, autophagic pathway was also increased with the increased expression and colocalization of LC3 with Neun and GFAP. Overall, this study showed that chronic VCZ exposure impaired mitochondrial homeostasis and increased oxidative stress in brain tissues.


Assuntos
Doenças Mitocondriais , Oxazóis , Estresse Oxidativo , Camundongos , Animais , Camundongos Endogâmicos C57BL , Encéfalo , RNA Mensageiro
11.
ACS Med Chem Lett ; 14(12): 1891-1892, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116440

RESUMO

[This corrects the article DOI: 10.1021/acsmedchemlett.2c00166.].

13.
Ageing Res Rev ; 91: 102074, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37709054

RESUMO

This commentary provides a novel synthesis of how biological systems adapt to a broad spectrum of environmental and age-related stresses that are underlying causes of numerous degenerative diseases and debilitating effects of aging. It proposes that the most fundamental, evolutionary-based integrative strategy to sustain and protect health is based on the concept of hormesis. This concept integrates anti-oxidant, anti-inflammatory and cellular repair responses at all levels of biological organization (i.e., cell, organ and organism) within the framework of biphasic dose responses that describe the quantitative limits of biological plasticity in all cells and organisms from bacteria and plants to humans. A major feature of the hormetic concept is that low levels of biological, chemical, physical and psychological stress upregulate adaptive responses that not only precondition, repair and restore normal functions to damaged tissues/organs but modestly overcompensate, reducing ongoing background damage, thereby enhancing health beyond that in control groups, lacking the low level "beneficial" stress. Higher doses of such stress often become counterproductive and eventually harmful. Hormesis is active throughout the life-cycle and can be diminished by aging processes affecting the onset and severity of debilitating conditions/diseases, especially in elderly subjects. The most significant feature of the hormetic dose response is that the limits of biological plasticity for adaptive processes are less than twice that of control group responses, with most, at maximum, being 30-60 % greater than control group values. Yet, these modest increases can make the difference between health or disease and living or dying. The quantitative features of these adaptive hormetic dose responses are also independent of mechanism. These features of the hormetic dose response determine the capacity to which systems can adapt/be protected, the extent to which biological performance (e.g., memory, resistance to injury/disease, wound healing, hair growth or lifespan) can be enhanced/extended and the extent to which synergistic interactions may occur. Hormesis defines the quantitative rules within which adaptive processes operate and is central to evolution and biology and should become transformational for experimental concepts and study design strategies, public health practices and a vast range of therapeutic strategies and interventions.


Assuntos
Hormese , Longevidade , Humanos , Idoso , Hormese/fisiologia , Envelhecimento/fisiologia , Adaptação Fisiológica , Antioxidantes
14.
Antioxidants (Basel) ; 12(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627502

RESUMO

Myocarditis is an inflammatory and oxidative disorder characterized by immune cell recruitment in the damaged tissue and organ dysfunction. In this paper, we evaluated the molecular pathways involved in myocarditis using a natural compound, Coriolus versicolor, in an experimental model of autoimmune myocarditis (EAM). Animals were immunized with an emulsion of pig cardiac myosin and complete Freund's adjuvant supplemented with mycobacterium tuberculosis; thereafter, Coriolus versicolor (200 mg/Kg) was orally administered for 21 days. At the end of the experiment, blood pressure and heart rate measurements were recorded and the body and heart weights as well. From the molecular point of view, the Coriolus versicolor administration reduced the activation of the TLR4/NF-κB pathway and the levels of pro-inflammatory cytokines (INF-γ, TNF-α, IL-6, IL-17, and IL-2) and restored the levels of anti-inflammatory cytokines (IL-10). These anti-inflammatory effects were accompanied with a reduced lipid peroxidation and nitrite levels and restored the antioxidant enzyme activities (SOD and CAT) and GSH levels. Additionally, it reduced the histological injury and the immune cell recruitment (CD4+ and CD68+ cells). Moreover, we observed an antiapoptotic activity in both intrinsic (Fas/FasL/caspase-3) and extrinsic (Bax/Bcl-2) pathways. Overall, our data showed that Coriolus versicolor administration modulates the TLR4/NF-κB signaling in EAM.

15.
Free Radic Res ; 57(5): 339-352, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37609799

RESUMO

Myocardial ischemia/reperfusion injury (MIRI) is the principal cause of death and occurs after prolonged blockage of the coronary arteries. Diabetes represents one of the main factors aggravating myocardial injury. Restoring blood flow is the first intervention against a heart attack, although reperfusion process could cause additional damage, such as the overproduction of reacting oxygen species (ROS). In recent years, açaí berry has gained international attention as a functional food due to its antioxidant and anti-inflammatory properties; not only that but this fruit has shown glucose-lowering effects. Therefore, this study was designed to evaluate the cardioprotective effects of açaí berry on the inflammatory and oxidative responses associated with diabetic MIRI. Diabetes was induced in rats by a single intravenous inoculation of streptozotocin (60 mg/kg) and allowed to develop for 60 days. MIRI was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. Açaí (200 mg/kg) was administered 5 min before the end of ischemia and 1 h after reperfusion. In this study, we clearly demonstrated that açaí treatment was able to reduce biomarkers of myocardial damage, infarct size, and apoptotic process. Moreover, açaí administrations reduced inflammatory and oxidative response, modulating Nf-kB and Nrf2 pathways. These results suggest that açai berry supplementation could represent a useful strategy for pathological events associated to MIRI.


Assuntos
Diabetes Mellitus , Euterpe , Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose
16.
J Neurophysiol ; 130(3): 671-683, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584088

RESUMO

Diabetes complications such as diabetic peripheral neuropathy (DPN) are linked to morbidity and mortality. Peripheral nerve damages in DPN are accompanied by discomfort, weakness, and sensory loss. Some drugs may demonstrate their therapeutic promise by reducing neuroinflammation, but they have side effects. Based on these considerations, the objective of this study was to examine the beneficial properties of açaí berry in a mouse model of DPN generated by injection of streptozotocin (STZ). Açaí berry was given orally to diabetic and control mice every day beginning 2 wk after STZ injection. The animals were euthanized after 16 wk, and tissues from the spinal cord and sciatic nerve and urine were taken. Our findings showed that daily treatment of açaí berry at a dose of 500 mg/kg was able to prevent behavioral changes as well as mast cell activation and nerve deterioration via NOD-like receptor family pyrin-domain-containing-3 (NLRP3)/apoptosis-associated speck-like protein containing a card (ASC)/caspase (CASP) regulation after diabetes induction.NEW & NOTEWORTHY Our research shows that açaí berry reduces mast cells degranulation and histological damage in diabetic neuropathy, improves physiological defense against reactive oxygen species, modulates the NLRP3/ASC/CASP axis, and ameliorates inflammation and oxidative stress. Diet could help treatment for diabetic peripheral neuropathy.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Euterpe , Animais , Camundongos , Caspases , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estreptozocina/efeitos adversos
17.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569490

RESUMO

Almond skins are known for their antioxidative and anti-inflammatory properties, which are mainly due to the presence of polyphenols. The aim of the present study was to evaluate the antioxidant and anti-inflammatory effects of almond skin extract (ASE) obtained from the Sicilian cultivar "Fascionello" and to evaluate the possible mechanisms of action using an in vitro model of human monocytic U937 cells as well as an in vivo model of carrageenan (CAR)-induced paw edema. The in vitro studies demonstrated that pretreatment with ASE inhibited the formation of ROS and apoptosis. The in vivo studies showed that ASE restored the CAR-induced tissue changes; restored the activity of endogenous antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione; and decreased neutrophil infiltration, lipid peroxidation, and the release of proinflammatory mediators. The anti-inflammatory and antioxidant effects of ASE could be associated with the inhibition of the pro-inflammatory nuclear NF-κB and the activation of the nuclear factor-erythroid 2-related factor 2 (Nrf2) antioxidant pathways. In conclusion, almond skin could reduce the levels of inflammation and oxidative stress and could be beneficial in the treatment of several disorders.


Assuntos
Antioxidantes , Prunus dulcis , Humanos , Antioxidantes/metabolismo , Carragenina/efeitos adversos , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Estresse Oxidativo , NF-kappa B/metabolismo , Edema/tratamento farmacológico
18.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511266

RESUMO

Myocarditis is an inflammatory cardiac disorder and the primary cause of heart failure in young adults. Its origins can be attributed to various factors, including bacterial or viral infections, exposure to toxins or drugs, endocrine disruptors (EDs), and autoimmune processes. Tebuconazole (TEB), which is a member of the triazole fungicide family, is utilized to safeguard agricultural crop plants against fungal pathogens. Although TEB poses serious threats to mammal health, the information about how it induces toxic effects through various pathways, particularly in autoimmune diseases, are still limited. Thus, the aim of this paper was to evaluate the effect of TEB exposure in autoimmune myocarditis (AM). To induce AM, rats were immunized with porcine cardiac myosin and exposed to TEB for 21 days. Thereafter, animals were sacrificed, and histological, biochemical, and molecular analyses were performed. TEB exposure increased heart weight, systolic blood pressure and heart rate already augmented by AM. Additionally, it significantly increased creatine phosphokinase heart (CK-MB), creatine phosphokinase (CPK), cardiac troponin T (cTnT), and cardiac troponin I (cTnI), as compared to the control. From the histological perspective, TEB exacerbates the histological damage induced by AM (necrosis, inflammation and cell infiltration) and increased fibrosis and collagen deposition. TEB exposure strongly increased pro-inflammatory cytokines and prooxidant levels (O2-, H2O2, NO2-, lipid peroxidation) and reduced antioxidant enzyme levels, which were already dysregulated by AM. Additionally, TEB increased NOX-4 expression and the TGFß1-Smads pathway already activated by AM. Overall, our results showed that TEB exposure strongly aggravated the cardiotoxicity induced by AM.


Assuntos
Doenças Autoimunes , Fungicidas Industriais , Miocardite , Ratos , Animais , Suínos , Miocardite/induzido quimicamente , Fungicidas Industriais/toxicidade , Peróxido de Hidrogênio , Triazóis/toxicidade , Doenças Autoimunes/induzido quimicamente , Creatina Quinase , Mamíferos
19.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511500

RESUMO

Endometriosis is a chronic disease characterized by pelvic inflammation. This study aimed at investigating the molecular mechanisms underlying the pathology and how they can be modulated by the administration of a natural compound, Actaea racemosa (AR). We employed an in vivo model of endometriosis in which rats were intraperitoneally injected with uterine fragments from donor animals. During the experiment, rats were monitored by abdominal high-frequency ultrasound analysis. AR was able to reduce the lesion's size and histological morphology. From a molecular point of view, AR reduced hyperproliferation, as shown by Ki-67 and PCNA expression and MAPK phosphorylation. The impaired apoptosis pathway was also restored, as shown by the TUNEL assay and RT-PCR for Bax, Bcl-2, and Caspase levels. AR also has important antioxidant (reduced Nox expression, restored SOD activity and GSH levels, and reduced MPO activity and MDA levels) and anti-inflammatory (reduced cytokine levels) properties. Moreover, AR demonstrated its ability to reduce the pain-like behaviors associated with the pathology, the neuro-sensitizing mediators (c-FOS and NGF) expression, and the related central astrogliosis (GFAP expression in the spinal cord, brain cortex, and hippocampus). Overall, our data showed that AR was able to manage several pathways involved in endometriosis suppression.


Assuntos
Endometriose , Humanos , Feminino , Ratos , Animais , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Doenças Neuroinflamatórias , Antioxidantes/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Medula Espinal/metabolismo , Estresse Oxidativo , Apoptose
20.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513248

RESUMO

Diet can modulate the different stages of inflammation due to the presence of bioactive compounds such as polyphenols. Apples are a great source of phenolic compounds that show anti-inflammatory and antioxidant properties, and these might be used as a dietary supplement and/or functional element in the treatment of chronic inflammatory illnesses. The aim of our study was to evaluate the anti-inflammatory and antioxidant actions of thinned apple polyphenol (TAP) extracts in a model of paw edema. The experimental model was induced in rats via subplantar injections of 1% λ-Carrageenan (CAR) in the right hind leg, and TAP extract was administered via oral gavage 30 min before and 1 h after the CAR injection at doses of 5 mg/kg and 10 mg/kg, respectively. The inflammatory response is usually quantified by the increase in the size of the paw (edema), which is maximal about 5 h after the injection of CAR. CAR-induced inflammation generates the release of pro-inflammatory mediators and reactive oxygen species (ROS). Furthermore, the inflammatory state induces the pain that involves the peripheral nociceptors, but above all it acts centrally at the level of the spinal cord. Our results showed that the TAP extracts reduced paw histological changes, neutrophil infiltration, mast cell degranulation, and oxidative stress. Additionally, the oral administration of TAP extracts decreased thermal and mechanical hyperalgesia, along with a reduction in spinal microglia and the markers of nociception. In conclusion, we demonstrate that TAP extract is able to modulate inflammatory, oxidative, and painful processes, and is also useful in the treatment of the symptoms associated with paw edema.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/uso terapêutico , Polifenóis/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina/toxicidade , Inflamação/metabolismo , Extratos Vegetais/uso terapêutico , Dor/tratamento farmacológico , Transdução de Sinais , Hiperalgesia/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...